▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Primal-Dual, a novel approach to optimisation in treatment planning An alternate automated planning process for heavy ion beam therapy

by Aaron Pim, Ph.D

November 2023

Contents

Current Methodology in Inverse Planning for Heavy lons

- Pseudo-Algorithm for current optimisers
- Computational complexity of current psuedo-algorithms

2 An introduction to Primal-Dual

- Statement of the cost functional
- Pseudo-Algorithm for the Primal-Dual system
- Advantages of the Primal-Dual system: Certainty of Convergence
- Advantages of the Primal-Dual system: Rate of Convergence
- Advantages of the Primal-Dual system: Uncertainty Quantification

Current Methodology in Inverse Planning for Heavy lons $\bullet \circ \circ \circ$

Pseudo-Algorithm for the Forward Model

- Fix the beam angles; initialise:
 - Beam Shape
 - Beam Energy
- Occupate all dose profiles.
- Galculate optimal profile.

Current Methodology in Inverse Planning for Heavy lons $o{\bullet}{\circ}{\circ}$

An introduction to Primal-Dual

Pseudo-Algorithm for current optimisers

Pseudo-Algorithm for the Forward Model

- Fix the beam angles; initialise:
 - Beam Shape
 - Beam Energy
- Occupate all dose profiles.
- Galculate optimal profile.

Image Source: Energy-reduced beta radiation fields from 90 Sr/ 90 Y for the BSS 2, May 2020, Journal of Instrumentation, Re Behrens 🕨 💈 🔄

Current Methodology in Inverse Planning for Heavy lons $\circ \circ \bullet \circ$

Pseudo-Algorithm for current optimisers

An introduction to Primal-Dual

Pseudo-Algorithm for the Forward Model

- Fix the beam angles; initialise:
 - Beam Shape
 - Beam Energy
- ② Compute all dose profiles.
- 3 Calculate optimal profile.

Current Methodology in Inverse Planning for Heavy lons $\circ \circ \circ \bullet$

Computational complexity of current psuedo-algorithms

Computational Complexity

No. of forward solves = No. possible beam shapes \times No. possible beam energies \times No. variations for Robustness

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Statement of the cost functional

Current Methodology

For i = 1, ..., N let \mathcal{D}_i denote the precomputed dose profiles

$$\min_{\mathbf{a}_i \ge 0} \left\| \sum_{i=1}^{N} \mathbf{a}_i \mathcal{D}_i - \mathcal{D}_T \right\|_{\mathsf{PTV}}^2 + \sum_{n=1}^{N} w_n \|\mathbf{a}_i \mathcal{D}_i\|_{\Omega_n}^2 \tag{1}$$

Alternate Methodology

Let u denote the particle density

$$\min_{\boldsymbol{u},\boldsymbol{f}} \|\mathcal{D}\boldsymbol{u} - \mathcal{D}_{\mathcal{T}}\|_{\mathsf{PTV}} + \sum_{n=1}^{N} w_n \|\mathcal{D}\boldsymbol{u}\|_{\Omega_n}^2 + \alpha \|\boldsymbol{f}\|^2$$
(2)

subject to u satisfying Boltzmann transport equation with admissible inflow.

Pseudo-Algorithm for the Primal-Dual system

Pseudo-Algorithm for the Primal-Dual system

1 Start with a given initial configuration.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

- **1** Start with a given initial configuration.
- **②** Compute the Dose profile with a single forward solve.

- **1** Start with a given initial configuration.
- **②** Compute the Dose profile with a single forward solve.
- **③** Feed Dose profile into Dual solver.

- **1** Start with a given initial configuration.
- **②** Compute the Dose profile with a single forward solve.
- **③** Feed Dose profile into Dual solver.
- Occupies the Dual Dose profile with a single dual solve.

- Start with a given initial configuration.
- **②** Compute the Dose profile with a single forward solve.
- **③** Feed Dose profile into Dual solver.
- Occupie the Dual Dose profile with a single dual solve.
- **(3)** Use Dual Dose profile to correct beam configuration in forward solver.

- Start with a given initial configuration.
- **②** Compute the Dose profile with a single forward solve.
- **③** Feed Dose profile into Dual solver.
- Occupie the Dual Dose profile with a single dual solve.
- **(3)** Use Dual Dose profile to correct beam configuration in forward solver.
- Repeat steps 2-5.

Advantages of the Primal-Dual system: Certainty of Convergence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Advantages

- Mathematical certainty of convergence
- Significantly fewer forward solves
- Accounting for uncertainties in the model

Properties of Primal-Dual

- Existence of solutions to the stationary problem.
- Uniqueness of solutions to the stationary problem.
- Stability of solutions of the time-dependent problem.

Advantages

- Mathematical certainty of convergence
- Significantly fewer forward solves
- Accounting for uncertainties in the model

Figure: Optimised solution to the Kolmogorov equation.

Advantages of the Primal-Dual system: Rate of Convergence

An introduction to Primal-Dual

Advantages

- Mathematical certainty of convergence
- Significantly fewer forward solves
- Accounting for uncertainties in the model

Figure: Relative error between each Primal-Dual iteration.

Advantages of the Primal-Dual system: Rate of Convergence

Advantages

- Mathematical certainty of convergence
- Significantly fewer forward solves
- Accounting for uncertainties in the model

Figure: Absolute error between each Primal-Dual iteration.

Advantages of the Primal-Dual system: Uncertainty Quantification

Advantages

- Mathematical certainty of convergence
- Significantly fewer forward solves
- Accounting for uncertainties in the model

Perturbed system

Let $\epsilon(x)$ be a random function then consider

 $\max_{\mathbb{P}(\epsilon) < 0.95} \min_{u,f} J(u,f)$

subject to

$$\frac{\partial u}{\partial t} + \Omega \cdot \nabla_{\mathbf{x}} u = \sigma_{\mathbf{a}} u - \iint_{I \times \mathbb{S}^2} \sigma_{\mathbf{s}} u d\Omega' dE$$
$$u(t, \mathbf{x}, E, \Omega) = f(t, \mathbf{x} + \epsilon(\mathbf{x}), E, \Omega)$$

・ロト・日本・日本・日本・日本・日本

An introduction to Primal-Dual

Thank you for listening

Engineering and Physical Sciences Research Council

National Physical Laboratory